

NTRODUCTION

- **Neuropsychological testing** = important component of the assessment of pediatric mild traumatic brain injuries (pmTBI) or concussions ¹
- Lack of a clear pattern of neuropsychological dysfunction
- **Subset** of impaired individuals beyond expected numbers in pediatric and adults ²⁻³
- What are the most clinically useful measures to ensure appropriate assessment?
- Paper-and-pencil and computerized batteries have their respective strengths and weaknesses 4-5
- Little published work directly comparing performance paper-and-pencil or computerized batteries

THE OBJECTIVE OF THE CURRENT STUDY IS TO COMPARE SENSITIVITY AND SPECIFICITY OF A COMMONLY USED PAPER-AND-PAPER BATTERY AND A COMPUTERIZED BATTERY IN THE SUB-ACUTE (SA) AND EARLY CHRONIC (EC) PHASES OF INJURY BY TWO APPROACHES :

- Scores on individual tasks included in each battery
- 2. Number of indicators of impairment on each battery

PROCEDURES

- Part of an ongoing study
- All participants included herein completed the paper-and-pencil (selected tests from the D-KEFS, WAIS-IV/WISC-V, and HVLT-R) and computerized (Cogstate brief) batteries

TABLE 1. Participant demographic information

Sub-Acute		Early Chro	
pmTBI	HC	pmTBI	
13.91 (2.7)	13.61 (2.9)	13.77 (2.7	
100 (42.6%)	72 (42.6%)	80 (42.1%	
50.14 (10.3)	55.5 (10.9) ***	50.69 (10.	
14.63 (3.3)	17.20 (3.5) ***	14.72 (3.3	
139 (59.1%)	_	117 (61.6%	
	Sub-AcutepmTBI13.91 (2.7)100 (42.6%)50.14 (10.3)14.63 (3.3)139 (59.1%)	Sub-AcutepmTBIHC13.91 (2.7)13.61 (2.9)100 (42.6%)72 (42.6%)50.14 (10.3)55.5 (10.9) ***14.63 (3.3)17.20 (3.5) ***139 (59.1%)-	

Nuisance variables = WRAT-4 and parental education

A Comparison of Paper-and-Pencil and Computerized Neuropsychological **Testing For the Sub-Acute and Chronic Assessment of Pediatric Mild Traumatic Brain Injury (pmTBI)**

Sicard, V, Stephenson, DD, Robertson-Benta C, Pabbathi Reddy S, Hergert DC, Dodd AB, Cromer JA, & Mayer AR

APPROACH 1 : SCORES ON TASKS

LOGISTIC REGRESSIONS FOR SCORES ON INDIVIDUAL TASKS FOR EACH BATTERY

Hierarchical logistic regressions were conducted

TABLE 2. Predictive measures from these logistic regressions at each visit

Madala	Sub-Acute			Early Chronic		
wodels	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity
Paper-and-Pencil						
Nuisance only	0.665	0.767	0.530	0.667	0.729	0.596
Nuisance & Tasks	0.714	0.808	0.590	0.685	0.746	0.615
Computerized						
Nuisance only	0.673	0.788	0.512	0.674	0.738	0.599
Nuisance & Tasks	0.711	0.814	0.567	0.665	0.716	0.605
Combined						
Nuisance only	0.668	0.781	0.512	-	-	-
Nuisance & Sig. Tasks	0.704	0.785	0.591	-	-	-

SUB-ACUTE

EARLY CHRONIC

subsequently excluded were older, had However, participants included at SA and demographics and injury characteristics Urine-based drug screens were conducted

onic HC 13.57 (2.8) 68 (42.5%) 55.68 (11.0) *** 17.32 (3.4) ***

FIGURE 1. ROC curves for each logistic regressions

SIGNIFICANT PREDICTORS AT STEP 2 At SA

Both variables contributed significantly to all

models at SA and EC visits

- Paper-and-Pencil : D-KEFS Trail A
- Computerized : One-Card Learning ACC
- Combined : One-Card Learning ACC
- At EC
- Paper-and-Pencil : HVLT-R
- Computerized : None
- No combined model was conducted

Adding the tasks at Step 2 significantly improved the models (*ps*≤0.008)

Nuisance & Computerized

NUMBER OF IMPAIRMENTS ON EACH BATTERY

- Step 1 : Nuisance variables

SIGNIFICANT PREDICTORS AT STEP 2

- At SA
- Computerized : None

TABLE 3. Predictive measures from these logistic regressions at each visit

Models

Paper-and-Pencil					
Nuisance only					
Nuisance $\& \ge 1$ indicator					
Nuisance $\& \ge$ indicators					
Nuisance $\& \ge$ indicators					
Computerized					
Nuisance only					
Nuisance $\& \ge 1$ indicator					
Nuisance $\& \ge 2$ indicators					

AFTER CONTROLLING FOR PREMORBID GROUP DIFFERENCES

- **USEFUL MEASURES**
- NO BATTERY OUTPERFORMED THE OTHER

REFERENCES:

- Concussion. Neuropsychology, 32(4): 495-508. Translation Journal of the ACSM, 5(11): 1-9.

APPROACH 2 : NUMBER OF INDICATORS

Cognitive impairment = 2 SD below control's group average on a task

 χ^2 test were conducted to compare the proportion of pmTBI and controls showing at least 1, 2, or 3 impairments on the two batteries at each visit

A series of hierarchical logistic regressions were conducted

Step 2 : At least X number of impairments

FIGURE 2. % of participants exhibiting at least 1, 2, or 3 indicators of impairments at each visit

Paper-and-pencil : ≥ 2 or ≥ 3 impairments

- At EC
- Paper-and-Pencil : \geq 3 impairments
- Computerized : None

Sub-Acute			Early Chronic			
Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity	
0.665	0.767	0.530	0.667	0.729	0.596	
0.675	0.795	0.518	0.667	0.734	0.590	
0.675	0.763	0.560	0.664	0.712	0.609	
0.683	0.763	0.578	0.673	0.723	0.615	
0.675	0.780	0.530	0.672	0.734	0.599	
0.673	0.789	0.512	0.666	0.723	0.599	
0.670	0.780	0.518	0.672	0.723	0.611	
0.673	0.784	0.518	0.669	0.734	0.592	

CONCLUSIONS

BOTH APPROACHES YIELDED SIMILAR PREDICTIVE ABILITY

CONTRARY TO HYPOTHESIS, EXECUTIVE FUNCTIONING TASKS WERE NOT THE MOST

HAVING AT LEAST 3 IMPAIRMENTS ON THE PAPER-AND-PENCIL BATTERY WAS PREDICTIVE OF GROUP MEMBERSHIP

McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S ... Vos PE. (2018). Consensus Statement on Concussion in Sports – The 5th International Conference on Concussion in Sport Held in Berlin, October 2016. Br J Sports Med, 51: 838-47. Beauchamp MH, Aglipay M, Yeates KO, Desire N, Keightley M, Anderson P ... Zemek R. (2018). Predictors of Neuropsychological Outcome After Pediatric

Sicard V, Lortie J-C, Moore RD, Ellemberg D. (2020). Cognitive Testing and Exercise to Assess the Readiness to Return to Play After a Concussion.

De Marco AP, Broshek DK. (2016). Computerized Cognitive Testing in the Management of Youth Sports-Related Concussion. J Child Neurol, 31: 68-75. Moser RS, Schatz P, Lichtenstein JD. (2015). The Importance of Proper Administration and interpretation of Neuropsychological Baseline and Postconcussion Computerized Testing. Appl Neuropsychol Child, 4: 41-8.

Kay T, Harrington DE, Adams R, Anderson T, Berrol S, Cicerone K ... Malec J. (1993). Definition of Mild Traumatic Brain Injury. J Head Trauma Rehabil, 8(3):